Archive for the 'physics' Category

Mars on earth, part 2 and again on the loss of O2

Sunday, August 27th, 2017

A reoccurring question on randform is: how stable is the current ecosystem on earth? And in particular how stable is it as a not too hostile environment for humans?

A possibility to find out is to isolate living systems.
Some of these experiments of such (more or less) closed artificial ecosystems were mentioned in the 2006 randform post Mars on earth.

And at least one of these long-term experiments more or less partially failed (namely the First mission of Biosphere 2) because, as the Pittsburgh Post-Gazette wrote: Biosphere 2 members “aired out”:

With an admitted leakage rate of just under 10 percent of its atmossphere yearly, oxygen levels inside dropped gradually over the project’s first 15 months, eventually reaching the levels normally found atop a 13,400-foot mountain. Because the oxygen loss was gradual, the crew members were able to continue functioning but their physical activities were eventually reduced to about 70 prcent of normal because of oxygen deprivation before project staffers outside injected more air.

As far as I know the major reasons, why the oxygen levels dropped were never fully established.
The reasons given in the Pittsburgh are differing from what I thought and wrote about the major reasons in the Mars on earth blog post:

the air supply had to be reenforced due to a miscalculation of the air consumption of bacteria in the soil of the greenhouse

where in retrospective I am unfortunately not sure, whether this reason about the decline of oxygen was given in the TV documentation which I had seen about Biosphere 2 or whether this was just my own interpretation of what had most probably happened.

So the question about the stability of the earth ecosystem is last but not least a question of O2 or not O2. And the balance of very tiny organisms may play a very major role in that question.

So amongst others in the post How much O2 will be left? I suggested that

“melting of permafrost could not only lead to more CO2 in the air but also induce a reagression of O2 (which may e.g. be due to a sudden expansion of aerobic organisms)*”

There are also other randform posts which intrinsically look at the O2 (and also CO2) balance. In particular some posts are dedicated to the oceans via studying phytoplankta.
Like the 2009 post about “The tragedies of marine towns” or the 2010 post about phytoplankton decline. Amongst others the posts illustrate again how complicated it is to infer any future developments, and that is even not easy to monitor the developments of microorganisms. Whatsoever -it seems that rather big changes may be underway, which may point to an out-of-balance situation. But as said this is an ongoing discussion and e.g. the phytoplankton post needs to be updated with the finding that it seems (following an article in the new scientist ) that

The rate at which phytoplankton are disappearing as oceans warm has been vastly overestimated by a glitch in models.

And in particular that

Increased CO2 concentrations often have competing positive and negative effects on phytoplankton, with winners and losers among different species.

Where especially the abundance of diatoms seems to be controversial.
That is the NASA study from 2015 Sept. 23 in Global Biogeochemical Cycles sees a clear decline at least in northern regions, while Nature (pay wall) finds:

Climate change enhances diatom growth mainly owing to warming and iron enrichment, and both properties decrease cellular nutrient quotas, partially offsetting any effects of decreased nutrient supply by 2100.

There are some possibilities to get a better overview over the stability of ecosystems from an more abstract viewpoint (see e.g. this article on Quanta) but still.

And because the balance of the microorganisms is so complicated (and in fact heavily influenced by human activity even in a rather direct way (see e.g. algae fuel)) and since models are only models it is important to conduct concrete experiments with closed ecosystems and at least to monitor direct physical quantities like oxygen levels.

So in fact by looking at visualizations of oxygen concentration in various years at NOAA it had been written in another randform post of 2014 that oxygen saturation in the ocean especially in the north seemed to have declined and eventually likewise the oxygen concentration in the air.

Do we know more now?

Unfortunately it seems things got rather worse. That is despite the fact that meanwhile there had been flamboyant announcements by various people to establish even settlements on Moon and Mars, it seems research on closed environments is rather in decline (a brief update here). That is it seems BIOS 3 closed now for real (thats how it sounded following an article in novosti kosmonavtiki) and the last experiments in the direction of a closed system seem to have been the Yuegong-1 mission in May 2014, but maybe I oversaw something.

Worse however seems to me the fact that NOAA seems to have ceased to produce visualizations of the oxygen concentrations.
Is that true?

At least there seem still to be people who look at things. That is in a recent article my observation in this randform post about the decline in oxygen levels was confirmed. (via CNN)
The confirming article is behind a paywall but if you click on the link in the CNN article it is momentarily visible and it’s written:

We find that the global oceanic oxygen content of
227.4 ± 1.1 petamoles (10^15 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths.


Five distinct regions with significant oxygen loss stand out that cannot be attributed to solubility changes. These are (1) tropical regions of all basins, which contain most of the upper ocean OMZ, (2) the North Pacific, (3) the South Atlantic, (4) the Southern Ocean and (5) the Arctic Ocean (Table 1, Fig. 1b, Extended Data Fig. 4).

The authors likewise see microorganisms as a potential major cause for the decrease:

This suggests that either multi-decadal variations or changes in ocean circulation induced ventilation, potentially
enhanced by increased upper ocean biological activity, are responsible
for the observed changes in oxygen below 1,000 m.

However as far as I understood their data went only until 2010 and my alarming observation was from the change between 2009 and 2013.

radio technology museum Königs-Wusterhausen, part 3, radio broadcast

Saturday, May 27th, 2017

After a brief history of the radio technology museum Königs-Wusterhausen on the “Funkerberg” (“broadcast hill”) and an overview on the impressive Dieselgenerator here now part 3 of the series. Part 3 deals a bit with the radio broadcasting itself and in particular with the role it played within my family.

What’s going on in Fukushima?

Friday, February 3rd, 2017

Some remarks on the recent observations regarding plant 2.

Information about solar irradiance measurements sought

Thursday, January 12th, 2017

Planetary science at The Shard: How soon is the sun’s radiation going to be destructive? (apart from the effect on the CCD chip)

This blog post is based on a thread in the Azimuth forum.

The current theories about the sun’s life-time indicate that the sun will turn in about 5 billion years into a red giant. How and when this process is going to be destructive to earth is still debated. Apparently according to more or less current theories there has been a quasi linear raise in luminosity, quoting from p. 3 “Distant future of the Sun and Earth revisited” by K.-P. Schröder and Robert Connon Smith, 2008:

The present Sun is increasing its average luminosity at a rate
of 1% in every 110 million years, or 10% over the next billion years.

Unfortunately I feel a bit doubtful about this, in particular after I looked at some irradiation measurements.
But let’s recap a bit.

In the Azimuth forum I asked for information about solar irradiance measurements. Why I was originally interested in how bright the sun is shining is a longer story, which includes discussions about the global warming potential of methane. For this post I prefer to omit this lengthy historical survey about my original motivations (may be I come back to this later) – meanwhile (see above) there is an also a newer reason why I am interested in solar irradiance measurements, which I want to talk about here.

Strictly speaking I was not only interested in knowing more about how bright the sun is shining, but how bright each of it’s “components” is shining, i.e. I liked to see spectrally resolved solar irradiance measurements and in particular measurements from a range between roughly the frequencies* 650nm and 950nm.

So I had found the Sorce mission, which is a NASA sponsored satellite mission, whose website is located at the University of Colorado. The website provides very nicely an interactive part with a fairly clear and intuitive LISIRD interactive app with which the spectral measurements of the sun can be studied.

As a side remark I should mention that this NASA mission belongs to the NASA Earth Science mission, which is currently threatened to be scrapped.

By using this app I found in the 650nm and 950nm range a very strange rise in radiation between 2003 and 2016 which happened mainly in the last 2-3 years. Here you can see this rise:

spectral line 774.5nm from day 132 to 5073, day 132 starting Jan 24 in 2003, day 5073 is end of 2016

Now, fluctuations within certain spectral ranges within the sun spectrum are no news, however here it rather looked as if a rather stable range suddenly started to change rather “dramatically”.

I put the word “dramatically” in quotes for a couple of reasons.

Spectral measurements are complicated and prone to measurement errors. Alone the subtle issue of dirty lenses etc. suggests that this is no easy feat and that so this strange rise might easily be due to a measurement failure. Moreover as said it looked as this was a fairly stable range over the course of ten years, but maybe this new rise in irradiation is part of the 11 years sun cycle, i.e. a common phenomenom. In addition, although the rise looks big it may overall still be rather subtle.

But so – how subtle or non-subtle is it then?

In order to assess that question I made a quick estimation (see forum discussion) and found that if all the additional radiation would arrive on soil (which of course it doesn’t due to absorption) than on 1000 sqm you could easily power a lawn mower with that subtle change! I.e. my estimation was 1200 W for that lawn patch. WOA!

That was disconcerting enough to download the data and linearly interpolate it and calculate the power of that change. I programmed a calculation program in javascript for that. The computer calculations revealed 1000 W, i.e. my estimation was fairly close. WOA again!

How does this translate to overall changes in solar irradiance? Some increase had already been noticed. NASA wrote 2003 on it’s webpage:

Although the inferred increase of solar irradiance in 24 years, about 0.1 percent, is not enough to cause notable climate change, the trend would be important if maintained for a century or more.

That was 13 ys. ago.

I now used my program to calculate the irradiance for one day in 2016 between the frequencies 180.5nm and 1797.62nm, i.e. about a quite big part of the solar spectrum and got the value \(627 W/m^2\) and computed the difference to one day in 2003 and got \(0.61 W/m^2\), which is 0.1% in 13 years, rather then 24 years. But of course this is no average and fluctuations play a big role in some parts of the spectrum, but well – this may indicate that the overall rate (!) of rise in solar radiation may have doubled. And concerning the question of the sun’s luminosity: for assessing luminosity one would need to take the concrete satellite-earth orbit at the day of measurement into account, as the distance to the sun varies or at least average – but still, on a first glance this appears disconcerting.

Moreover for this specific range I mentioned above I calculated the value \(192 W/m^2\) for day in 2016 (day 5073), so this would mean for this frequency range the increase in 13 ys was about 0.5% and most of it in the last 2-3 years.

Given that this spectral range has e.g. an overlap with the absorption of water (clouds!) this should at least be discussed.

And indeed one can even see the rise in this range within the solar spectrum without zooming in. See how the spectrum splits into a purple and dark red line in the lower circle?

Difference in spectrum between day 132 and 5073

The upper circle display another rise, which is discussed in the forum.

So concluding all this looks as if this needs to be monitored a bit more closely. Finally the theories about the lifetime of the sun are only theories.
In particular it would be important to see wether these rises in irradiance are also displayed in other measurements, so I asked in the Azimuth Forum, but sofar got no answer.

The russian wikipedia site about solar irradiance contains unfortunately no links to russian satellite missions (if I haven’t overseen something) and there exists no chinese or indian wikipedia webpage about solar irradiance. I also couldn’t find publicly accessible spectral irradiance measurements on the ESA website (although they have some satellites out there) and wrote in December an email to the head of the section solar radiometry of the World Radiation Center (WRC) Wolfgang Finsterle with no answer yet.

In short if you know about publicly available solar spectral irradiance measurements other than the LISIRD ones then please let me know.

update Jan 15, 2017: This post appeared also as a guest post on John Baez blog Azimuth with minor modifications, in particular the english was polished by John.

correction Feb, 3, 2017: * frequencies should read inverse spatial frequencies or simply wavelength

radio technology museum Königs-Wusterhausen, part 2, the Dieselgenerator

Saturday, November 19th, 2016

There was a bit of discussion going on about the last image in the last post which displays two emergency switches on a wall in the radio museum. On the switches there were the words “Diesel” and “Schaltfeld (switch board).” Above the switches there were two signs, each with the message: “Es darf nur eine Laufkatze betrieben werden” (There musn’t be more than one hoist in operation”). I was guessing that “Diesel” meant eventually the Diesel generator within the museum building which served -if I understood correctly- mainly as an emergency power system. So here now images from the Diesel generator.

radio technology museum Königs-Wusterhausen, part 1

Monday, October 31st, 2016

Todays post deals with the transmission and radio technology museum at a former transmission facility in the town of Königs-Wusterhausen close by Berlin (the town is reachable by Berlin subway). The facility is located on a hill and rather big (Flight over the the facility including its museum (building with red tiles)). The museum is definitely a must-see.


About maldeformation in Fallujah

Saturday, April 30th, 2016

image from Wikipedia by Vincent de Groot.

In the context of the last post about the WHO and the assessment of health problems due to radioactivity I wonder about one citation in the BBC report Falluja doctors report rise in birth defects. The BBC report was linked to from the Guardians WHO critique which I had mentioned in the last post.

According to the BBC report the citation was by “British-based Iraqi researcher Malik Hamdan:”

Ms Hamdan said that based on data from January this year, the rate of congenital heart defects was 95 per 1,000 births – 13 times the rate found in Europe.

Malik is a male name, so I guess this is a misprint and who is probably meant is Malak Hamdan.

Why did I wonder about that citation?


Commemorating the Chernobyl disaster

Tuesday, April 26th, 2016

Image of the new safe confinement of April 2015 by Tim Porter, Wikimedia Commons

On the occasion of commemorating the Chernobyl disaster which happened then 25 years ago an interview with Dörte Siedentopf (a physician who has since 20 years been working in disaster relief programs for victims of the disaster and an antinuclear activist) had been published on Germanys major public news website. It was reposted today on the occasion of the 30th anniversary of the disaster. Amongst others Dörte Siedentopf drew my attention to a 1959 agreement between the IAEA and the WHO.

Alert, Nunavut etc.

Saturday, November 28th, 2015

With some help from Tim and on the occasion of the 2015 United Nations Climate Change Conference I did a visualization which combines local temperatures with methane data. The local temperatures are from the HADCRUT4 file, so they unfortunately stop in 2011. The methane data is from the website of the Earth System Research Lab. Unfortunately there are not so many methane measurements as there should be. In particular very few temperature stations have also made methane measurements, so I improvised a bit and joined some measurement points which are geographically close. The measurements are from Vestmannaeyar, Iceland; Alert Nunavut, Canada; Svalbard, Norway with temperatures from Lufthavn and CH4 from Ny Ålesund; Syowa, Antarctica and from Azores, Portugal, where the temperatures are from Santa Maria Island and the methane data is from Terceira Island (if I interpreted the station names correctly).

I have currently not so much Internet time left, partly because I currently have a job, where I have to sit a lot in front of a computer and partly because I have been trying to improve things in my local surroundings (partially as it seems in vain though) – so no long explanations. I hope you see at least what I see in the images above.

temperature curve: mean of anomalies (monthly deviations of values from monthly mean over measured time period, annual mean of that)
methane curve: annual mean of values

Volt ohne Raum

Wednesday, October 21st, 2015

Organic lettuce in Brandenburg